Structure of the Human Cytomegalovirus Protease Catalytic Domain Reveals a Novel Serine Protease Fold and Catalytic Triad

نویسندگان

  • Ping Chen
  • Hideaki Tsuge
  • Robert J. Almassy
  • Cindy L. Gribskov
  • Susumu Katoh
  • Darin L. Vanderpool
  • Stephen A. Margosiak
  • Christopher Pinko
  • David A. Matthews
  • Chen-Chen Kan
چکیده

Proteolytic processing of capsid assembly protein precursors by herpesvirus proteases is essential for virion maturation. A 2.5 A crystal structure of the human cytomegalovirus protease catalytic domain has been determined by X-ray diffraction. The structure defines a new class of serine protease with respect to global-fold topology and has a catalytic triad consisting of Ser-132, His-63, and His-157 in contrast with the Ser-His-Asp triads found in other serine proteases. However, catalytic machinery for activating the serine nucleophile and stabilizing a tetrahedral transition state is oriented similarly to that for members of the trypsin-like and subtilisin-like serine protease families. Formation of the active dimer is mediated primarily by burying a helix of one protomer into a deep cleft in the protein surface of the other.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigating the role of histidine 157 in the catalytic activity of human cytomegalovirus protease.

Herpesvirus proteases belong to a new class of serine proteases and contain a novel Ser-His-His catalytic triad, while classical serine proteases have an acidic residue as the third member. To gain a better understanding of the molecular basis for the functional role of the third-member His residue, we have carried out structural and biochemical investigations of human cytomegalovirus (HCMV) pr...

متن کامل

The herpesvirus proteases as targets for antiviral chemotherapy.

Viruses of the family Herpesviridae are responsible for a diverse set of human diseases. The available treatments are largely ineffective, with the exception of a few drugs for treatment of herpes simplex virus (HSV) infections. For several members of this DNA virus family, advances have been made recently in the biochemistry and structural biology of the essential viral protease, revealing com...

متن کامل

Structural and biochemical studies of inhibitor binding to human cytomegalovirus protease.

Herpesvirus protease is required for the life cycle of the virus and is an attractive target for the design and development of new anti-herpes agents. The protease belongs to a new class of serine proteases, with a novel backbone fold and a unique Ser-His-His catalytic triad. Here we report the crystal structures of human cytomegalovirus protease in complex with two peptidomimetic inhibitors. T...

متن کامل

Crystal structure of calpain reveals the structural basis for Ca(2+)-dependent protease activity and a novel mode of enzyme activation.

The combination of thiol protease activity and calmodulin-like EF-hands is a feature unique to the calpains. The regulatory mechanisms governing calpain activity are complex, and the nature of the Ca(2+)-induced switch between inactive and active forms has remained elusive in the absence of structural information. We describe here the 2.6 A crystal structure of m-calpain in the Ca(2+)-free form...

متن کامل

Inhibitor binding induces active site stabilization of the HCV NS3 protein serine protease domain.

Few structures of viral serine proteases, those encoded by the Sindbis and Semliki Forest viruses, hepatitis C virus (HCV) and cytomegalovirus, have been reported. In the life cycle of HCV a crucial role is played by a chymotrypsin-like serine protease encoded at the N-terminus of the viral NS3 protein, the solution structure of which we present here complexed with a covalently bound reversible...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cell

دوره 86  شماره 

صفحات  -

تاریخ انتشار 1996